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Abstract 

The dynamics of two highly conducting, f i n i t e  length streams i n  

re la t ive motion, coupled by a transverse e l ec t r i c  or  longitudinal 

magnetic f i e l d  are  examined i n  detail .  

cally described by two second order coupled hyperbolic pa r t i a l  

d i f f e ren t i a l  equations. Four classes of flow exis t :  (1) subcapillary 

(2) supercapillary co-streaming ( 3) supercapillary counter-streaming 

The systems may be mathemati- 

4 

4 

4 

. 

and (4) subcapillary-supercapillary flow. The first three are 

considered i n  the present paper. The behavior of the inf in i te ly  long 

system i s  examined from the dispersion relation and the Bers-Briggs 

s t a b i l i t y  cri terion. 

(1) and (3) flows (no eigenvalues ex is t  for  c lass  (2) flow) 

complex eigenfrequencies computed. 

The eigenvalue problem i s  formulated for c lass  

and the 

Electrohydrodynamic experiments on 

these systems are  described and compared with the theory. 

explanations are  given f o r  the observed ins tab i l i t i es .  

Physical 

c 
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I. Introduction 

Kelvin-Helmholtz i n s t ab i l i t y  arises when adjacent layers of f lu id  

are i n  re la t ive  motion. A simple explanation of t h i s  i n s t ab i l i t y  may 

be given on t h e  basis of convected momentum (Beanouilli ins tab i l i ty )  (1) , 
but t h i s  leads t o  a naive picture of real f lu id  mechanics, since it 

assumes tha t  the  layers may s l ide  freely over each other. Chandrasekhar-, 

offers  an introduction t o  the  c lass ica l  Kelvin-Helmholtz ins tab i l i ty .  If 

a r e a l i s t i c  model including viscosity i s  postulated, t he  problem becomes 

qui te  complicated, and only recently have numerical solutions been 

obtained fo r  specific models. 

(2) 

(3) 

Kelvin-Helmholtz i n s t ab i l i t y  is not res t r ic ted  t o  c lass ica l  f luids .  

Special cases of the  hydromagnetic versionhavebeen considered by Fejer (4) , 
Michael, ( 5 )  N ~ r t h r o p , ( ~ )  Alterman, (7) and Sen!8)The only work done 

on t h e  electrohydrodynamic Kelvin-Helmholtz i n s t ab i l i t y  i s  by Lyon, ( 9 )  

who derived the  dispersion relation f o r  two streaming inviscid dielec- 

t r i c  f luids  ( i n  contact) stressed by an e lec t r i c  f ie ld .  

a t ten t ion  has been given recently t o  streaming ins t ab i l i t i e s  i n  plasmas, 

both gaseo s 

inject ions in to  a plasma as a possible scheme fo r  thermonuclear heating 

are being st~died!'~Jome experiments involving counter-streaming electron 

beams, complicated by the  presence of a background plasma, are as yet 

unexplained, and a re  currently the subject of research. 

Considerable 

i109 =&d sol id  state. ( 12J evices employing electron beam 

( 14,15 1 

c . 
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The continuum electromechanical situations considered here can 

be modeled by a relatively simple theory which provides good agree- 

ment with experiment. 

highly conducting streams in relative motion and coupled by an electric 

field. 

modeling two real fluids in physical contact. 

exists in msgnetohydrodynamics, in which the electric field is replaced 

by a magnetic field. Here the coupling is produced by a magnetic field 

trapped between two perfectly conducting fluid streams. 

compliment each other and both w i l l  be considered in the same context. 

The electrohydrodynamic model consists of two 

Electrical coupling eliminates the difficulty encountered in 

An analogous situation 

These situations 

It should be noted that the ‘implications of the results presented 

here are not restricted simply to electromechanical systems. 

analogous situations exist in two-stream electron beam interactions, 

and in solid state plasmas. 

the direction of streaming (the longitudinal direction). 

the imposition of transverse boundaries produces an infinite set of modes 

of propagation. 

transverse boundaries imposed, is an immense problem. The conventional 

technique is to assume that wavelengths of interest (in the longitudinal 

direction) are short compared to the length of the system so that the 

effect of longitudinal boundaries may be ignored. Q,uite often, and in 

all the cases considered here, the long waves are the most significant 

and play a more important role in determining the dynamics than higher 

Indeed, 

Waves are considered to be propagating in 

In general, 

To solve for these modes, with both longitudinal and 
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order transverse modes. 

boundaries w i l l  be careful ly  considered, while at t h e  same time 

including the  e f fec t  of only the  principle transverse modes. It is 

possible then t o  provide a complete picture  of the  system dynamics. 

The correct m o d e l  f o r  t h e  longitudinal boundary conditions can be unam- 

bigously specified.  This i s  not possible i n  general, since boundary 

conditions consistent with causal i ty  may not be c lear ly  defined. 

For t h i s  reason, t h e  e f f ec t s  of longitudinal 

used It should be pointed out that coupled mode theory, (16) 

extensively i n  complex systems with interact ing waves, par t icu lar ly  

i n  electron beam devices, is  not par t icu lar ly  useful  f o r  e l e c t r i c  field 

coupled systems since the uncoupled modes have complex wavenumbem. 

I1 Problem Description 

The mathematical model consists of two highly conducting f l u i d  

streams i n  r e l a t ive  motion, stressed by an e l e c t r i c  or magnetic field 

(Figure 1). 

siderably and it w i l l  be shown that experimental r e su l t s  obtained using 

The assumed planar geometry s implif ies  t he  mathematics con- 

c i r cu la r  jets are i n  quantitative agreement with t h i s  m o d e l  i f  the  

coupling coeff ic ients  i n  the  equations of motion are experimentally 

determined. Attention w i l l  be res t r ic ted  t o  a study of t he  kink 

(1 7) modes (m = 1) of the  jets. Measurements by Crowley on t h e  dynamics 

of a s ingle  jet  stressed by a transverse e l e c t r i c  f i e ld  support the 

v a l i d i t y  of t h e  m o d e l .  
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The equations of motion fo r  t h e  streams may be wr i t t en  (18) 

. 
In the above equations, T is t he  surface tension, p is the  f l u i d  

density,  

Vo the equilibrium stream velocity, Eo and Ho t h e  equilibrium e l e c t r i c  

and magneticfieldsrespectively. Thequation f o r  magnetic coupling is  

obtained from Equation (1) by replacing we by -%. 

t he  transverse displacement of the streams fram equilibrium, 

2 2 (19) 

The following assumptions have been made in the  derivation of 

Equation (1): 

(a) l i n e a r  theory 

(b) no viscous o r  r e s i s t i v e  effects 

( c )  long wave model (h>>lb-alor a) 

(d)  a l l  equilibrium quantities are constants. 

( e )  planar t h i n  streams, 
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Equation (1) w i t h  we = 0 is  simply the equation of a vibrat ing 

s t r i n g  w i t h  convective veloci ty  V . 
t h e  self-coupling term,represents the  net t rac t ion  of e l e c t r i c a l  or igin 

act ing on the  stream caused by a deflection of that stream. Similarly, 

t h e  last term, the  mutual coupling term, i s  the net e l e c t r i c a l  t rac t ion  

caused by the deflection of the other stream. The quant i t ies  w and 

q, both have physical significance. 

parallel equally spaced conducting p la tes  with t h e  center p l a t e  

free t o  move, and equal electric fields applied above and below t h e  

plate.  Then an upward displacement concentrates t he  E f ie ld  l i nes  

above t h e  plate ,  weakens them below, with the  r e su l t  that t h e  unbalanced 

e l e c t r i c  stress is destabi l iz ing.  The parameter w is the  growth rate 

of i n s t a b i l i t y  of the  plate. 

r o l e  of a dis t r ibuted negative spring. 

flow veloci ty  V d V t  t h e  behavior is  an absolute s t a t i c  (wr = 0)  

in s t ab i l i t y ,  whereas f o r  Vo>Vt, it is a convective i n s t a b i l i t y .  

The t h i r d  term i n  Equation (l), 
0 

e 
Consider f o r  t he  moment three 

e 
The e l e c t r i c  f i e l d  i n  e f f ec t  plays the  

For the s ingle  stream, i f  the 

0 

(19) 

For magnetic f ie ld  coupling, an upward displacement compresses 

the  f ie ld  l i nes  above, expands them below the  body; the  resul tant  mag- 

n e t i c  pressure is  s t ab i l i z ing  and % is  the frequency of osc i l la t ion  

.. 
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i n  t he  field. 

scence below a cutoff frequency, while the supercapillary stream 

A single  subcapillary stream (Vo<Vt) exhibits evane- 

> V ) exhibits only propagating waves. (vo t 

One might expect t h i s  ant idual i ty  t o  carry over i n to  two-stream 

systems as well. 

seenthat those instabilities which are Kelvin-Helmholtz i n  character 

exist whichever type of f ield is  used. 

This is only par t i a l ly  true,  however, and it will be 

Since Equation (1) consists of two  coupled wave equations, there 

are four character is t ic  velocit ies of pmpaBatio.A~oLnely, vo +, vt 
1.2 192 

This means there are four d is t inc t  flow conflgurations possibl;. In 

addition, it is  easy t o  show by means of t he  method of characterist ics 

t h a t  the  longitudinal boundary conditions consistent with causali ty are 

uniquely specified once the character is t ic  l ines  are determined. These 

are summarized below and Classes I - I11 w i l l  be discussed i n  the  following 

sections.  Work concerning the  Class I V  system will be reported. 

I 

I1 

I11 

Flow Conditions No. Boundary Conditions 

Stream 1 Stream 2 

1 1 1 1 

2 0 2 0 

2 0 0 2 

I V  2 0 1 1 
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The dispersion re la t ion  f o r  t he  system i s  obtained d i r ec t ly  from 

Equation (1) by assuming solutions of t h e  form e j(d-kx) fo r  glY2. 

= o  1 2 2  2k2 + It w ‘I[(m-Vo k)2 - V 2 2  k + e p we] 6 
el 2 t2 

(2) 

and w and k are complex, w = wr+ j w .  and k = k + jki ,  
1 r 

I11 Class I Coupled Elastic Continua 

If both streams have subcapillary flow velocity,  t h e  behavior is 

bas ica l ly  tha t  of two field coupled elastic membranes; the  e f f ec t  of 

flow velocity merely changes t h e  details. 

= Vt and we = w = w . The dispersion relation(Equati0n (2 ) ) i s  plotted 

i n  Figure 2, where w and k have been scaled t o  w 

From Equation (2)  it i s  evident that? is replaced by -* f o r  magnetic 

coupling. 

For convenience, let  Vt = 
1 vt2 

e 1 e2 W 

and 9 respectively.  
e,h vt 

Figure 2(a)  and (b) respectively show e l e c t r i c  f ield coupling 

with t h e  mutual coupling between t h e  streams excluded (single stream 

in terac t ions)  and w i t h  t h e  mutual interact ion included. 

true i n  Figure 2(c)  and (d) for magnetic coupling. 

seen t h a t  first two waves, then a l l  four waves become unstable. 

The same i s  

In Figure 2(b)  it is 

(complex W )  as k is reduced, t h e  growth rate increasing as t h e  wave 

tends t o  zero. It is  e a s i l y  shown from the Bers-Briggs21y2griterion tha t  

these instabilities are absolute and s t a t i c  (wr = 0), as shown i n  Figure 3. 

The method of B e r s  and Briggs provides a cr i te r ion  i n  distinguishing 

whether a wave is  propagating, evanescent, convectively unstable, o r  

absolutely unstable. The method consists i n  p lo t t ing  t h e  complex k 

values of t h e  dispersion relat ion for fixed w as w is  increased from 

-00 t o  zero. 

r i 
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For example, fo r  k ' s  originating below the  kr axis, if a k locus remains 

below the  k axis when u-0, it represents a decaying or evanscent wave; 

i f  it lies on the  axis, it is a purely propagating wave t o  t h e  r ight ,  and 

i f  it crosses the axis it becomes an amplifying wave o r  convective 

ins tab i l i ty .  For k ' s  originating above t h e  k axis, a similar statement 

i s  valid. 

the  k 

an absolute instabi l i ty;  the  value of w 

the frequency and growth rate, the value of k the spa t ia l  dependence. 

Finally, w is vai.ied t o  obtain the  wave properties for  a l l  frequencies. 

Figure 3 exhibits two saddle points, which is  reasonable since each 

stream separately exhibits a single saddle point. 

(Figure 2(c)),  we observe that each stream exhibits evanescence, which 

is  a l so  exhibited by t h e  coupled system. 

r 1 

r 
I f ,  however, two k loci  join, one from above, one from below 

axis and s p l i t  t o  form a saddle point as w.--,O, t h i s  s ignif ies  r 1 

(saddle p o i n t  frequency) gives 
S 

S 

r 

For magnetic coupling 

while the Class I regime is  not par t icular ly  i n t e r e s t i n g  from the  

point of view of introducing new phenomena, it provides a means of 

calibrating an experiment t o  t e s t  the other flow regimes. Consider the 

special  case v 

two symmetry modes, a symmetric mode, S1(x,t) = - 6  (x,t), and an a n t i -  

symmetric mode, <,(x,t) = e,.(x,t), o r  t he  S and A modes respectively. 

The dispersion equation for e lec t r i c  f i e l d  coupling reduces simply t o  

= Vo = 0. The motion can be seen t o  be composed of 
1 2 0 

2 

2 2 2  2 +1 S w - Vtk + we %z = 0 (,) 
2 

(3) 
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Two saddle points ex is t ,  

ks = 0 

If we now consider the system t o  be of f i n i t e  length and impose 

we obtain t h e  eigenvalue equation 

From (5) the  resonant 

and decreases t o  zero 

value given by 

nnvt at zero electric field frequency is simply 

as the  e l ec t r i c  field is  raised t o  t he  cri t ical  

- 
L 

= -  
L - ' J 2  W 

c r i t  . e 

We observe that t h e  fundamental mode is t h e  first t o  go unstable and 

tha t  t he  symtnetric mode becomes unstable at a lower cri t ical  field than 

t h e  antisymmetric mode. 

is obtained as L-etpand is given by t h e  saddle point above. 

as expected since it means that the  boundaries have a s tab i l iz ing  influence. 

Further, the  maximum growth rate of i n s t a b i l i t y  

This  is 

An ExDeriment 

Stable planar f lu id  streams are quite  d i f f i c u l t  t o  produce 

e~perimentally!*~hstead, cylindrical  f l u id  streams w i l l  be used. 

However, the  analysis fo r  t h i s  system is extremely complicated. 

assumption is  made here tha t  t h e  experimental behavior can be predicted 

The 
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by a planar model i f  t h e  system parameters are determined experimentally. 

A f l u id  jet of zero velocity can be simulated qui te  w e l l  by a closely 

wound weak spring (having approximately t h e  same l inear  density although 

a considerably higher tension than that due t o  the  surface tension of 

l i q u i d  jets). This experiment w i l l  serve both as verification of the  

model and as calibration of the  apparatus f o r  later experiments. 

Two matched springs 1/811 dia and 80 cm length were stretched t o  

the same tension between parallel r igid supports i n  t he  horizontal plane 

t o  eliminate gravitational effects. A rigid rcd was placed parallel t o  

each spring t o  provide e l ec t r i ca l  equilibrium. By ca re f i l l y  adjusting 

t h e  outer plates, it was possible t o  establish force equilibrium 

using a single DC voltage source. 

plot  of frequency squared vs. voltage squared should yield two straight 

l i nes  of negative slope. The resonant frequency was measured by super- 

imposing a s n a U  AC voltage on t h e  previously grounded plate and varying 

the  frequency for maximum spring deflection. The results i n  Figure 4 

follow the predicted behavior and provide the determination of ue and 

q .  A t  high voltage the equilibrium positions of the springs were 

displaced, which a c c o u b f o r  t he  deviation of the  curve A.am a s t ra ight  

l i n e  

Froen Equation (5) we observe that a 

IV Class I1 Coupled Costreaming Jets 

If the  two streams have flow velocitkVo > V  then the  dynamics are 

In t h i s  case, all waves propgate downstream a,nd since 
t' 

qu i t e  different .  
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all boundary conditions are imposed at the same point in space, there 

are no eigenf'requencies . The absolute instabilities for subcapillary 

flow and electric field coupling discussed previously now become con- 

vective instabilities, as seen in the dispersion curves of Figure 5, 

and verified-by the Befs-Briggs criter2on. -Since there are 

no absolute instabilities, the system may be excited in the sinusoidal 

steady state. If the flow velocities are equal, the system possesses 

sympetry modes as in the previous case. 

the wave-number becomes 

FKJm the dispersion equation, 

"vO 

k =  m Z B  o t  
where 

% 
A 

Thus the syatem has a cutoff frequency for spatial growth given by 

below which the waves are amplifying. 

larger spatial growth, and the growth rate becomes lllaximum as a-0. 

These effects have been qualitatively verified experimentally. 

The symaetric mode exhibits the 

The dispersion curves for magnetic coupling are shown in Figure 6. 

It is seen that for f l o w  velocities approximately equal the system behaves 
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, essent ia l ly  as i f  t he  jets were mutually uncoupled and exhibits only 

propagating waves. 

f l o w  velocit ies,  then the fast wave on one stream couples t o  the slow 

wave on the  other stream t o  produce an amplifying wave. 

a l so  exists i n  electron beams; i n  fac t ,  the  equation for longitudinal 

osci l la t ions i n  an electron beam can be obtained from the  magnetic 

coupled equations by letting v --., 0 and y" 1. 

However, if the streams have suff ic ient ly  different  

This s i tuat ion 

t 

V C l a s s  I11 Counterstreaming ~ e t s  

The dynamics of two coupled oppositely directed supercapillary 

streams is qui te  different  from the cases considered so far. In t h i s  

case, waves can propagate only downstream on each jet, but since they 

are oppositely directed an internal feedback mechanism is available which 

potent ia l ly  at least could provide ins tab i l i ty .  

are shown in Figure 7. 

l i t t l e  coupling except at t h e  origin where the  curves join. While the 

system is evidently unstable, it is  not c lear  what kind of i n s t ab i l i t y  

is present. From 

cume 1 of Figure 8a, t h e  conditions for  a saddle point are present, with 

us being purely imaginary i n d i c a t i n g  a s t a t i c  ins tab i l i ty .  

dependence i s  exponential. 

i n  the  neighborhood of t h e  loc i  of curves 3 and 4. 

Typical dispersion curves 

For e lec t r i c  field coupling, there appears t o  be 

The Bers-Briggs s t a b i l i t y  plots  are shown i n  Figure 8. 

The spatial 

I n  addition there is a m i l d  overs tabi l i ty  

The dispersion relation for  magnetically coupled counter-streaming 

jets is shown i n  Figure 7c and d. This  system a lso  exhibits i n s t a b i l i t y ,  
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and from curves 1 and 2 of Figure 8b, it is clear  tha t  it is an 

overstabil i ty.  

wave-like, contrasting t h e  e lec t r ic  f i e l d  coupled case. 

The spatial character of the i n s t a b i l i t y  is essent ia l ly  

1f we now consider t he  important case V , a considerable 
6% 

simplification of t he  mathematics resu l t s .  The dispersion relat ion 

simplifies t o  

2 4  2 2 4 2 2  
(If- () k + k [ w e q ( f -  Vt) - 2 2 ( f +  {fl + w + w we%+ u: = 0 

which is  biquadratic i n  both k and w, a consequence of the two flow speeds 

being equal. If we examine (8) f o r  possible saddle points, we seek the  

frequencies with negative, imaginary part which w i l l  result i n  double 

roots i n  k. 4 2 Since it i s  of t he  form Ak + Bk + - C = 0 t h e  poss ib i l i t i es  

are: (a) C = 0 which means k = 0 and ws = Comparison with 
rn -. Figure 8a shows that the  saddle point is ks= 0 and w = - j w e d T  

(b) B 

quencies are stab16 .' 

S 
2 - U C  = 0, which means k = + 2 , but t h e  corresponding fre- - 2 A  

. . 

This mea.ns that as t h e  velocity of the jets are made equal i n  

magnitude, t h e  overstabi l i ty  observed i n  Figure 8a disappeam and the  

s t a t i c  i n s t ab i l i t y  is not appreciably changed. 

For magnetic field coupling, condition (b) above produces the  

saddle point, given by 
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'0 
2 

V, 

( 9 )  

The e f f ec t  i n  Figure 8b of making the  ve loc i t ies  of equal magnitude is 

t o  s h i f t  the  saddle point frequency t o  the  j w  axis  ( s t a t i c  i n s t a b i l i t y )  

and t o  make the  wavelength real. 

If we now compare the e l e c t r i c  field coupled and magnetic f i e l d  

coupled models, two facts become evident. 

the electric field coupled system is more unstable than t h e  magnetic field 

system (by a f ac to r  of 4 fo r?  = 2 and Vo/Vt = 3) .  

are s t a t i c a l l y  (absolutely) unstable, even though nei ther  system is 

absolutely unstable without t h e  mutual coupling. 

the electric field self coupling term is destablizing while f o r  magnetic 

coupling it is  s tab i l iz ing .  

F i r s t ,  from the saddle point frequencies, 

Second, both systems 

As stated previously, 

The conclusion is t h a t  t he  i n s t a b i l i t y  is caused by t h e  mutual 

interact ion of the  two counter-streaming supercapillary streams and is 

therefore Kelvin-Helmholtz i n  character, contrasting the  previously 

considered i n s t a b i l i t i e s  which were  Rayleigh-Taylor i n  nature. 

invest igate  t h i s  fur ther ,  i f  the s t a b i l i t y  is re-examined with both 

t h e  self coupling terms and the  surface tension eliminated, both systems 

To 
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are found t o  be s t a t i c a l l y  unstable with t h e  same growth rate. 

physically reasonable t h a t  t h i s  should be so since whether t h e  streams 

pull on each other (e lec t r ic  field coupling) or push on each other 

(magnetic f ield coupling) is  immaterial. 

It is  

The Eigentralue Problem 

Since boundary conditions must be i n p o s k  at two different  points 

i n  space, t he  system possesses eigenvalues. This system is unusual, 

however, i n  t h a t  each stream i6’ free t o  move at its downstream end. 

Furthermore, two counter-stkaming j e t s  is an example of a system which 

does not possess eigenvalues i n  t h e  uncoupled state. 

To determine t h e  natural  modes, each jet will be assumed t o  enter 

t he  interaction region unexcited. The boundaq conditions are: 

q - L  t )  = ,--&$-L t )  = 0 

a% 4,cL t )  = =(+L t )  = 0 

where L = half length of the  jets. 

The problem can be considerably simplified by again taking advantage 

of the  synuuetry which exists i f  t h e  flow veloci t ies  are of equal magnitude. 

It can be seen that both t h e  equations of motion and the  boundary condi- 

tions are satisfied if  the s@ric and ant i symetr ic  modes are expressed 

by 6 ( t )  = 15 (-x t) respectively; i.e., t he  symmetry is now about 
1x1 2 1  

t h e  origin as shown i n  Figure ginstead of the  longitudinal axis---before. 
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I .  

A 

From Equation (1) we may assume a solution <(K,t) = s(X)ejwt so 
A -3y 

that s1(x) = ,2 Bie 
1 =I 

biquadratic dispersion equation. 

where the k's are determined from the 

The solution for jet 2 is then given 

This may be written in simpler form 88 a linear combination of odd and 

even functions of x. 

A 

<,(X) = A  6 (X) + A 6 (x) + A  6 (x) + A  6 (x) 
el O1 e2 O2 

A 

where 

I -  

I -  
I -  

W e 

= COS %,2x cosh s12x - 3 sin 4 2x sinh 5,2x 
I 

Q1,2x = COS %,2x sinh g12x - j sin % 2x cosh 
I 

and 

k1,2 = %,2 + j5,2 

Applying the symmetry conditions we get 

Substituting the boundary conditions into Equation (13) yields the 

following eigenvalue equation. 
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(14) 

This equation: combined with the dispersion relation, yields 811 expression 

A (o,V V w 

complex eigenfrequencies as a function of the parameters of the system. 

The important parameters of the system are Vo, we, and L; by suitably 

scaling w to we and L to V,/we the number of parameters may be reduced 

and the eigenvalue equation becomes, A (w/we, Vt/Vo, 7 , Lwe/Vo) = 0. 

The effects of Vt/Vo andq are small, so that essentially A (w/we, Lwe/Vo)= 0 

is the functional dependence desired. 

2 ,L) = 0 which in principle can be solved to obtain the 
0’ t’ e’ 

The resulting eigenfrequency versus normalized length curves for 

the lowest three synrmetric and antisymmetric modes are shown in Figure 

10. 

normalized decay rate + 00 as the length -0. 

For small field or short length, all modes represent decay, the 

The effects of the 

boundaries are strongly stabilizing. For a very long system, the modes 

which are unstable approach two asymptotic values, the more unstable of 

which is the saddle point predicted by the Bers-Briggs criterion for the 

infinite length system. Thus the asymptotic behavior at large and small 

values of Iwe/Vo are physically expected. 

However, there are several facts which cannot be predicted from 

the dispersion relation alone. 

are purely imaginary; the A mode remains a decay made, while the S made 

The lowest S and A mode eigenfrequencies 
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Lwe 

vO 
becomes unstable as - i s  increased and f ina l ly  approaches the saddle 

point frequency. 

modes above the  fundamental are dynamic (ur f 0), unti l  a c r i t i c a l  

value of L",/Vo is reached for each mode when t h e  modes become purely 

static growth or decay. 

interest ing since they represent overstabi l i t ies .  In  an experiment, 

however, these modes would be v i r tua l ly  impossible t o  see because of 

t he  overriding static i n s t a b i l i t y  of the fundamental synrnetric mode. 

This  is the most unstable mode of the  system. All 

Thus modes A2, S3, Ab, etc. ,  are part icular ly  

A t  the point of impending in s t ab i l i t y  w = 0, and the constraint 

on t he  parameter values may be calculated from Eq. (14) and the  disper- 

s ion  relation. Thus, 

2 4  2 2  4 q2-1 (If- Vt)k + k ue(y',- <) + we '7 = 0 

+ 1  
Solving for k, 

Fram Equation (13) 1, and I become indeterminate at o = 0, but i n  the  2 

This simplification yields for the condition of impending in s t ab i l i t y  
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. .  

vs. ab. (Since A can be "eL Equation 1 5  is plotted i n  Figure 11 as 
absorbed i n  a and b, A is taken t o  be ,/R 
zero here. ) 

strongly affected by transverse geometry, except when t h e  external 

plates  are placed very close t o  the f l u i d  streams, when the  required 

e l e c t r i c  field fo r  i n s t a b i l i t y  tends t o  zero. This is physically rea- 

sonable, since a small displacement on the  stream w i l l  produce a large 

change i n  the e l e c t r i c  traction. 

As can be seen t h e  point of i n s t a b i l i t y  is not 

The eigenfunctions f o r  the point of impending i n s t a b i l i t y  are eas i ly  

calculated. From Equation (I)+), se t t ing  

t ions  fo r  t h e  synnuetric mode 

0 and applying the boundary condi- 

aS(-L)_O 
A 

(-L) = 

cash a2x 1 
A sinh Qix 

sl(x) = '0  [sinh T L  - cosh %L + 
2 

w h e r e  

The open endedness of t h e  j e t s  is c lear ly  evident i n  Equation (16) and 

contraats the  displacement of the fundamental mode of the  two-spring 

system. The plot i s  essent ia l ly tha t  shown i n  Figure 12, where the 

Iwe 
vO 

eigenfunctions fo r  - = 3 fo r  the lowest three symmetric and antisymmetric 

modes are plotted.  The dynamical behavior is  evident from the  display 

of the  t r a j ec to r i e s  a t  three successive ins tan ts  of normalized time. 
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The stability and symmetry are apparent. 

the f’undamental modes is imaginary, the trajectories exhibit no phase 

shift for increasing time. 

exhibit propagating behavior as well as growth or decay in time. 

Since the eigenfrequency for 

The higher modes, on the other hand, all 

Numerical Computation 

The solution of Equation (14) to yield the complex eigenfrequencies 

as a function of the parameters requires the use of a computer to 

arrive at useful solutions. 

Newton-Raphson iteration method, in which the complex frequency is 

The algorithm is a two dimensional 

considered as t w o  independent variables. The computation proceeds as 

follows: the parameter values and the complex frequency is initially 

assumed and the wavenumbers computed. The complex boundary conditions 

determinaUWL2 function (the left hand side of Equation (14))is then 

evaluated. For eigenfrequencies, this function is identically zero, but 

in general it is not. 

incremented and the four partial derivatives computed. 

The real and imaginary p a r t s  of the frequency are 

From these a new 

complex frequency is determined and the process repeated until a conver- 

gence test is satisfied or a preset number of iterations exceeded and 

that particular computation terminated. 

achieved, a parameter (usually the normalized length) is incremented, 

Once a convergence has been 

the starting value for the next computation automatically computed using 

an extrapolation formula,and the process continued until a branch of an 

eigenfrequency curve is completed or a non-mergence occurs. 

Transient Behavior 

While a complete knowledge of the eigenmodes is sufficient to 

determine the dynamical behavior of the system, it does not leave one 
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w i t h  a very c lear  physical picture of the transient behavior t o  some 

arb i t ra ry  i n i t i a l  disturbance. To provide th i s  picture the or iginal  
(24) 

equations can be programmed using the method of characterist ics.  

boundary conditions are  that each j e t  enter the interaction region 

unexcited. 

j e t  2 i s  i n i t i a l l y  unexcited. 

Fig. 13 fo r  two values of the e l ec t r i c  f i e l d  very close t o  but on either 

side of the point of impending instabi l i ty ,  marked points A and B i n  

Fig. ll. 

The 

J e t  1 (traveling to  the r igh t )  i s  given an i n i t i a l  disturbance; 

The resul t ing t ransient  is shown i n  

The i n i t i a l  disturbance grows w h i l e  it propagates downstream, 

i l l u s t r a t i n g  the convectively unstable character of the jets. A s  it 

propagates it exerts  a t ract ion on j e t  2 pull ing it m y  from equilibrium 

(T = 5). 

interaction region and the shape of the fundamental symmetric mode begins 

t o  appear. A s  time progresses, this mode grows and the higher modes 

disaBpear. Since point A i s  d o s e  t o  thb point of impending ins tab i l i ty ,  

the  growth r a t e  of the ins tab i l i ty  is  quite slow. 

A t  T = 10, the i n i t i a l  disturbance has been swept aut of the 

In  Fig. l3(b)  the same conditions are used except the e l e c t r i c  

f ie ld  is  reduced t o  just  below the in s t ab i l i t y  point. Now, however, 

the amplitude growth of j e t  1 cannot produce suff ic ient  t ract ion on the 

returning je t  t o  sustain the disturbance, and the amplitudes decay 

slowly i n  time. 

I% suff ic ient  e l ec t r i c  f i e ld  i s  applied t o  the system so that  the 

A 2  mode is  a l so  unstable and the same conditions applied, it i s  found that 

after a short t ransient  i n  which the i n i t i a l  transient i s  swept down- 

stream, the system s e t t l e s  down t o  a combination of the two unstable 

modes, but since the S 1  mode i s  more unstable, t h i s  mode  ultimately 

dominates. 
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Magnetic Field Coupling 

A s  previously mentioned, the magnetic f i e l d  and e l e c t r i c  f i e l d  

coupled systems a re  c losely analogous, the principle difference bein;? 

t h a t  the s e l f  coupling term i s  s t ab i l i z ing  f o r  magnetic f i e l d  systems, 

while being destabi l iz ing f o r  e l e c t r i c  f i e l d  systems. One might expect 

therefore t h a t  the magnetic f i e l d  coupled counter-streaming j e t s  t o  be 

l e s s  unstable, which i s  ver i f ied i n  Fig. 14. 

A s  i n  the case of e l e c t r i c  f i e l d  coupling: (1) f o r  s m a l l  magnetic 

f i e l d ,  a l l  modes a re  decay modes with u + 03 as Iw, /V + 0, ( 2 )  f o r  iluh/Vo+ a 

the unstable modes approach the saddle point frequency and (3) the lowest 

S and A modes a re  s t a t i c  modes. 

i n s t a b i l i t y  and the i n s t a b i l i t y  is  i n  a l l  cases s t a t i c .  A s  i n  e l e c t r i c  

f i e l d  coupling the fundamental modes dominate the dynamics although now 

both the symmetric and antisymmetric modes must be considered. 

i h G  

I n  contrast ,  however, - a l l  modes exhibi t  

A t  the point of impending i n s t a b i l i t y  o = 0 and an analysis similar 

t o  the derivation of Equation (15) yields  

A s  seen i n  Fig. 1 5  the transverse boundaries have an important 

e f fec t  i n  determining whether the S or A mode w i l l  be the f i rs t  t o  go 

unstable. Also  the effect  of the transverse plate  spacing i s  opposite 

t o  the e l e c t r i c  f i e l d  case. Since the magnetic f i e l d  i s  inherently 

s t ab i l i z ing ,  bringing the plates close t o  the j e t s  w i l l  impede the 

des tab i l iz ing  e f f e c t  of the flow. 
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The eigenfunctions a t  the point of i.mpending in s t ab i l i t y  are given 

by : 

A 

' sinf3 x cosP2x 1 
l .  \ 

2 sinplL - C O S B ~ L  j s 

A 

The t ra jec tor ies  are nearly those shown i n  Fig. 16 for %/Vo = 4, where 

the lowest three modes are plotted for  two i n s t a n t s  of time, showing the 

dynamical behavior. 

wavelike tha t  those f o r  the e l ec t r i c  case. 

The magnetic f i e ld  eigenfunctions are  much more 

The t ransient  behavior of the magnetic f i e ld  coupled system, fo r  

conditions similar t o  those described above fo r  the e l ec t r i c  f i e l d  case, 

i s  carr ied out i n  reference (18) fo r  points C and D i n  Fig. 15. 

r e su l t s  are  i n  agreement with Eqs. (17) and (18). 

The 

An Electrohydrodynamic Experiment 

In  order t o  ver i fy  a t  l e a s t  some of the resu l t s  of the previous 

sections, an experiment consisting of two counterstreaming water j e t s  

stressed by a transverse e lec t r ic  f i e l d  tias constructed. 

between nozzles and the transverse spacings were carefully kept t h e  

same a s  i n  the two spring calibration experiment. 

diameters were a l so  the same. 

The length 

The j e t  and spring 
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Because the plates and j e t s  were non-planar, the relat ive polarity 

of the e l ec t r i c  f i e ld  i n  the f ie ld  regionsW&Simportant. 

because a j e t  i s  influenced by the non-adjacent plate. 

described, the voltage of the elements was of a l ternate  polarity. This 

minimized the e f fec t  of the non-adjacent plate and secondly alluwed the 

use of a single puwer supply. 

This was 

I n  the experiments 

I n  order t o  produce a su%table j e t  of sufficient length it was 

necessary t o  damp out a l l  sources of noise which would excite the , 

natural  sausage ( m  = 0) mode of instabi l i ty .  Bassett (25) and Melcher (19) 

have shown that a transverse e l ec t r i c  f i e l d  increases the spa t ia l  growth 

r a t e  of t h i s  mode and effectively shortens the useful length of the je t .  

As a result considerable care was necessary t o  produce a j e t  80 c m  long 

before breakup with the e l ec t r i c  f ie ld  a t  approximately the breakdown 

value f o r  air. 

the viscosity t o  a sufficient level  t o  damp out the sausage mode without 

affecting the principle ( m  = 1) mode. 

principle mode wavelengths were long, while the sausage mode wavelengths 

were on the order of about 1 cm. 

To help achieve t h i s  glycerine was added t o  increase 

T h i s  was pract ical  since the 

The experiment consisted i n  measuring the decay ra te  VS. voltage 

for the luwest mode of the system. 

the normally grounded plate  t o  deflect  the je t s ,  with a large DC voltage 

on. 

t ransient  recorded. The results a re  sham i n  Fig. 17 and the theoretical  

results are  seen t o  be i n  agreement with the experiment. 

A small DC voltage was impressed on 

With the j e t s  deflected, the plate  was grounded and the decay 

For a law applied voltage, the decay transient i s  quite rapid and 

a b i t  d i f f i c u l t  t o  interpret .  

unambiguously i t  i s  assumed that a l l  higher modes have damped before the 

In order t o  measure the fundamental mode 
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usable portion of the decay curve has been reached. 

end of the transient but before the transient became noise limited. As 

the voltage w&s increased, the decay curves were more nearly exponential, 

but near the point of i n s t ab i l i t y  the j e t s  became quite noisy. 

This was near the 

Because 

of the j e t  break up a t  the highest voltages, the equipotential model 

was no longer v a l i d  and the experimental data was not i n  agreement w i t h  

the theoretical  value. 

It should be noted that the j e t  velocity was appraximately 30 times 

the capi l lary velocity, so that the e f fec t .  of surface tension on these 

measurements was completely negligible. 

V I  Conclusions 

The basic electrodydrodynamic and magnetohydrodynamic surface waves 

for  an incompressible f lu id  have been classif ied and investigated by 
(19) 

Melcher. I n  studies of single streams, the f ree  charge, e l ec t r i c  f ield 

coupled and free current, magnetic f i e l d  coupled models have been 

extended t o  include the e f fec t  of convection, Unti l  now there has been 

no workreported i n  the l i t e r a tu re  concerning the two-stream systems. 

Since long waves are  the most important the procedure adopted is  t o  

consider only the principal transverse modes and t o  investigate the longi- 

tudinal  modes in  de ta i l .  The result ing equations of motion f o r  the 

systems considered here ( k i n k  modes of the streams), consist  of two 

coupled hyperbolic p a r t i a l  d i f fe ren t ia l  equations. This is fortunate, 

since then the method of character is i t ics  may be used t o  provide the 

answer as  t o  haw t o  specify boundary conditions which do not violate 

causality. For example, i t  i s  unphysical t o  specify a downstream 

boundary condition on a supercapillary je t ,  whether f i e l d  coupled t o  

another je t  or not. This concept is often overlooked i n  the l i terature .  
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For the more general problem when the principal mode results i n  the 

equatians of motion not being of the pure hyperholic type ( for  example 

the long wave sausage mode of a s i n g l e  j e t )  the question of specifying 

boundary conditions consistent with causali ty must be reexamined. 

the author's knowledge, t h i s  problem has not been investigated. 

To 

For the problem of two field coupled streams considered i n  t h i s  

paper, it is  shown that there a re  four f l o w  configurations which are 

basically different. 

For the classes of f low i n  which boundary conditions ex i s t  a t  

more then me point i n  space (Classes I, 111, and I V ) ,  an i n f in i t e  

set of eigenmodes ex i s t  and the eigenf'requencies (complex i n  general) 

and time dependant euenfhctions can be ccmputed t o  given the detailed 

structure of the system dynamics. When causal boundary conditions 

e x i s t  a t  only one point i n  space, a s  i n  Class I1 flaw, no eigenmodes 

exist and hence no absolute in s t ab i l i t i e s  are  possible. 

The dynamics of two f i n i t e  length f i e l d  coupled streams has been 

discussed and compared (1) t o  the in f in i t e  length system (2) one f l a w  

regime with another (3) with respect t o  the type of f ield coupling 

(4) t o  their  single stream counter parts. 

of the f i n i t e  length system can be inferred from the infinite length 

system (dispersion relation and Bers-Briggs cr i ter ion) ,  yet important 

effects  ex i s t  which require the boundaries fo r  explanation, suchas the 

overs tab i l i t i es  for  the counter streaming e l ec t r i c  f i e l d  coupled system. 

There ex i s t s  a close analogy between magnetic f i e l d  coupled conduc- 

While some of the properties 

t i n g  streams and e lec t ros ta t ic  osci l la t ions of electron beams. 

The equation of motion for two interpenetrating electron beares i s  

that given by equation (1) for  the magnetic f i e l d  coupled case i f  the 

surface tension term i s  suppressed and TI = 1. 
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. 
Since electron beams contain no effective "surface tension," CUSS I 

flaw does not exist and costreaming beams exhibit only the convectively 

unstable regime. The Class I11 flow, counterstreaming beams, exhibits 

eigenfrequency plots similar to those shown in Fig. 15, Le., all modes, 

both symmetric and antisymmetric, exhibit purely static instability. 

This model is currently being extended to explain the overstabilities 

observed by Kofoid in his experiments with counterstreaming electron 

beams in the presence of a background plasma. 
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Figure Captions 

F i m e  - 1. 

pled by means of an applied e l ec t r i c  or magnetic f i e ld .  

Two highly conducting f l u i d  streams in  re la t ive  motion are  cou- 

Figure - 2. 

for the long wave model (A>=) of the system of Figure 1. 

plotted fo r  r e a l  k. 

flow), with (a )  and (b) e l ec t r i c  f i e l d  coupled and ( c )  and (d) magnetic f ield 

coupled. Curves (a )  and (c),  w i t h  the mutual coupling ignored, have been in- 

cluded fo r  comparison. 

Dispersion curves, assuming solutions of the form exp j (% - kx) 
Ccunplex has been 

Both streams have subcapillary f l u i d  velocity (c lass  I 

Figure 1. Stab i l i t y  curves for  e l ec t r i c  f ield coupling f o r  the conditions 

of Figure 2. 

t o  0. 

type (ai = 0 )  absolute instabilities. 

Complex k is  plotted for fixed ar as a. is increased from - QD 
1 

Two saddle points are  apparent for  the "2" curves, indicating s t a t i c -  

Figure 4. Frequency dependance on applied e l ec t r i c  f i e l d  for the funda- 

mental syaPnaetric and antisymmetric modes fo r  two springs s t resses  by a trans- 

verse e l ec t r i c  field. The dashed curve is based on Eq. (5). 

Figure 5. 

II), e lec t r i c  f ield coupling, are sham for two flow conditions. 

is  plotted for r e a l  k. 

f l o w  conditions. 

Dispersion curves for co-streaming, supercapillary j e t s  (class 

Colnglex a 

The system exhibits convective in s t ab i l i t y  for both 

The mutual coupling i s  suppressed in (a) and ( e ) .  
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F i w e  Captians Continued 

Figure 6. 

for conditions sirnihr t o  Figure 5. For lVol - Val QVt, as i n  (b), only 

propagating waves are  present, whereas, the system is convectively unstable 

Dispersion curves for class  I1 flow, magnetic f i e l d  coupling, 

Figure 7. Dispersion c m e s  for supercapillsry, counter-streaming flow 

(Class 111). 

f i e l d  coupling in (c )  and (a). 

mutual coupling is suppressed in (a) and (c).  

Electr ic  f ield coupling is shown i n  (a) and (b), magnetic 

is plotted fo r  real k and the Complex 

Figure - 8. 

duces a strong static in s t ab i l i t y  (curves 1) and a weak averstabi l i ty  

(curves 3 and 4). 

(curves 1 and 2). 

Class I11 stability curves: (a) e lec t r i c  f i e l d  coupling pro- 

(b) magnetic f i e l d  coupling produces an overstabi l i ty  

Figure 2. Sketch of sylnmetrymodes f o r  similar counter-streaming j e t s .  

F i m r e  10. 

e l e c t r i c  f i e l d  coupled counter-streaming jets. 

mode  (Sl) exhibits s t a t i c  i n s t ab i l i t y  IPe/Vo > 1.1. 

A4, c tc . )  exhibit  overstabi l i ty  an6 then s t a t i c  i n s t ab i l i t y  as We/Vo is in- 

creased. 

Complur eigenfrequencies YS. nonnalized length f o r  similar 

The fundamental symmetric 

Higher modes (A2, S3, 

is symmetric about the abscissa and only one branch is shown. r 



c 

-31- 

Figured Captions Continued 

F imre  11. 

system of Figure 1 0  a t  the point of impending ins tab i l i ty .  

Effect of transverse geometry on the normalized length f o r  the - 

Figure - E. 
and antisymmetric modes f o r  the conditions of Figure 10. 

Time dependent eigenfunctions for the three lowest symmetric 

We/Vo = 3 

F i w e  3. 
field coupled j e t s .  ThC later jet, traveling t o  the right,  is  given M 

i n i t i a l  displacement. 

leaving only the fundamental symmetric mode which slowly becomes unstable i n  

( a )  and slowly decays away i n  (b). 

Transient behavior of two similar counter-streaming e l ec t r i c  

Stable components of t h i s  exci ta t ion propagate away, 

Points A and B are  shown in Figure U. 

F i w e  14. Complex eigenf'requencies VS. normalized length f o r  similar 

magnetic f ie ld  coupled counter-streaming je t s .  All modes exhibit  s t a t i c  

ins tab i l i ty ,  the growth rate approaching the saddle point as lPh/Vo - =. 

The r e a l  part of the eigenfrequency is  symmetric about the abscissa and only 

one branch is shown. 

- 

Figure 12. 
Point of impending in s t ab i l i t y  for the fundamental symmetric and antisym- 

metric modes. The conditions are the same as in Figure 14. 

Effect of transverse geometry on the normalized length a t  the 

Figure - 16. 

and antisymmetric modes corresponding t o  the eigenfrequencies of Figure 14. 

Time dependent eigenfunctions f o r  the three lowest symmetric 

Wh/V0 = 4 

Figure 17. 

e l e c t r i c  f i e l d  coupled counter streaming jets. 

Fundamental symmetric mode decay ra te  VS. applied voltage for  
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Figure 1. 

pled by means of an applied e l ec t r i c  or magnetic f i e ld .  

Two highly conducting f l u i d  streams in re l a t ive  motion a re  cou- 
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for the long wave m o d e l  (A>=) of the system of Figure 1. 

plot ted for  r e a l  k. 

flow), with (a)  and (b) e lec t r ic  f i e l d  coupled and (c)  and (d)  magnetic f i e l d  

coupled. Curves (a )  and (c), with the mutual coupling ignored, have been in- 

cluded f o r  comparison. 

Dispersion curves, assuming solutions of the form exp j (Wt  - kx) 
Complex 0 has been 

Both streams have subcapillary f l u i d  velocity (class I 



L 
Y 

I 

VK. t 

t' 



I I I 1 I 

W 
cl 
0 
I 

I 

/ 
/ 

/ 

3 
3 
d 

3 
3 
rr) 

(u 
h 

> 
o x  
0 -  
r\] 

0 
0 
c 
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Fippre 2. 
II), e l ec t r i c  f i e l d  coupling, are shown for two f l o w  conditions. 

Dispersion curves f o r  co-streaming, supercapillary j e t s  (class 

Coqplex 

i s  plotted fo r  r e a l  k. The system exhibits convective in s t ab i l i t y  f o r  both 

f l o w  conditions. The mutual coupling is suppressed i n  (a) and (c). 
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Figure 6. Dispersion curves for class I1 flow, magnetic f i e l d  coupling, 

for conditions similar to Figure 5. 

propagating waves are present, whereas, the system i s  convectively unstable 

if Ivol - V I X V t  (Figure 6 ( d ) . )  

For IVol - Vo21 QVt, as i n  (b), only 
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Fiwre 1. 
(Class 111). 

f i e l d  coupling i n  ( c )  and ( d ) .  

mutual coupling is suppressed i n  (a )  and ( c ) .  

Dispersion curves for supercapillary, counter-streaming f l o w  

Electric f i e ld  coupling is  shown in (a)  and (b ) ,  mametic 

is plotted for real k and the Complex 
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Figure :. 
duces a strong static instability (curves 1) and a weak overstability 

(curves 3 and 4). 

(curves 1 and 2 ) .  

Class I11 s tabi l i ty  curves: (a) e lectric  f i e l d  coupling pro- 

(b)  magnetic f i e l d  coupling produces an werstabi l i ty  
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Figure 10. Complex eigenfrequencies vs. normalized length for similar 

electric  f i e l d  coupled counter-streaming jets. The fundamental symmetric 

mode (Sl) exhibits s tat ic  instability We/", > 1.1. 

Ab, e t c . )  exhibit overstability and then s ta t i c  instabi l i ty  as UO /Vo i s  in- 

creased. 

Higher modes (A2, S3, 

e 
is symmetric about the abscissa and only one branch is shown. r 
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and antisymmetric modes for  the conditions of Figure 10. 

Time dependant eigenfunctions f o r  the three lowest symmetric 

We/vo = 3 
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F i q r e  - 14. Complex eigenfrequencies vs. normalized length for  similar 

magnetic f i e l d  coupled counter-streaming j e t s .  All modes exhibit static 

instabi l i ty ,  the growth rate approaching the saddle point as  IPh/Vo -. OD. 

The real part of the eigenf'requency is  symmetric about the abscissa and only 

one branch is  shown. 
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Figure 12. 

point of impending instability for the fundamental symmetric and antisym- 

metric modes. The conditions are the same as in Figure 14. 

Effect of transverse geometry on the normalized length at  the 
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and antisymmetric modes corresponding to the eigenfrequencies of Figure 14. 

Time dependant eigenfunctions for the three lowest symmetric 

IPh/V0 = 4 
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electric f ie ld  coupled counter streaming jets .  

Fundamental. symmetric mode decay rate YS. applied voltage for 

, 

. 


